8 Troubleshooting of Mechanical Seals

8.1 General
A mechanical seal is expected to achieve its maximum MTBPM when it is operated within its design specifications. A seal is considered to have failed when leakage exceeds environmental or plant site operating limits. The failure may occur before or after the seal has achieved its designed life expectancy. A failure of a seal may be a major contributor to rotary equipment failure and downtime.
An understanding of the mode of seal failure (11) can lead to extending the life of rotary equipment by improving seal design and material selection, installation and operating procedures, and environmental controls.

8.2 Causes of Mechanical Seal Failure
The failure of a seal may be the result of:
- Incorrect selection of seal design or materials for the application temperature, pressure, speeds, and fluid properties.
- Abuse of the seal components before installation including chipping, scratching, nicking, or allowing parts to become dirty.
- Erroneous installation including assembly, seal setting, or placing of components in the chamber.
- Improper startup, dry running, or failure of environmental controls.
- Improper pump operation.
- Contamination of the sealing fluid with abrasive or corrosive materials.
- Equipment with excessive shaft runout, deflection, vibration, or worn bearings (10).
- Worn-out seal. The seal achieved its normal life expectancy.

8.3 Possible Seal Leakage Points
A single stage mechanical seal may leak along one of four paths. See Figure 43.

Figure 43. Possible Seal Leakage Points

1. **Seal face** leakage is visible at the point where the shaft exits the gland or at the drain connections.
2. **Dynamic secondary seal** leakage is also visible at the point where the shaft exits the gland or at the drain connections.
3. **Static secondary seal** leakage is visible at the point where the shaft exits the gland or at the drain connections.
4. **Gland gasket** leakage is visible at the gland-seal chamber interface.

8.4 Seal Failure Analysis
Much can be learned by a complete documented analysis including the following:
- **Inspect the rotary equipment** before shutdown and record:
 - equipment inlet and outlet pressures
 - pump flow vs curve best efficiency point (BEP)
 - equipment history
 - product and seal chamber temperatures
 - leakage points, see 8.3
 - leakage rates
 - type of leakage (product or flush)
 - flush flow, pressure, and temperature
 - noise type and intensity
 - vibration levels
- **Inspect the rotary equipment** during disassembly and record:
 - equipment type, model, and serial number
 - evidence of pitting (cavitation) in pump bowl
 - condition of bearings
 - alignment measurements
 - condition of seal chamber, deposits, wear
 - condition of shaft (sleeve), fretting corrosion
- **Inspect the mechanical seal** during disassembly of the rotary equipment and record:
 - seal manufacturer, type, and identification
 - seal history
 - condition of the seal, discoloring, corrosion
 - buildup of sediments, product, coke, etc.
- **Decontaminate any seal** that is to be returned to the manufacturer for analysis or reconditioning and include the above information.
- **Inspect the seal** components during disassembly of the seal and record observations detailed in the following portions of this section.
8.4.1 Seal face wear patterns may often explain the causes of seal failure. Most seal face assemblies have one narrow face and one wide face. The narrow face creates a circular mark called a wear pattern on the wide face.

- **Normal wear patterns**, Figure 44, are concentric with the outer and inner diameters and are the same width as the narrow face. Contact is light, even, and consistent.

![Figure 44. Normal Face Wear Pattern](image)

- **Narrow wear patterns**, Figure 45, are thinner than the narrow face and can be the result of operating the seal at pressures above its design limits. Reduce the pressure in the seal chamber or select a seal design with adequate pressure limits.

![Figure 45. Narrow Wear Pattern](image)

- **Wide wear patterns**, Figure 46, are wider than the narrow face and can be the result of problems with the equipment misalignment, bad bearings, shaft deflection, bent shaft, or pump cavitation. Restore the equipment to the manufacturer’s standards or select a seal designed to handle off-design conditions.

![Figure 46. Wide Wear Pattern](image)

- **No wear pattern**, Figure 47, indicates that the rotary face is not turning against the stationary face. Eliminate slipping of the rotary drive or interference of the rotary with the seal chamber or gland. Use proper installation techniques.

![Figure 47. No Wear Pattern](image)

- **Intermittent wear patterns**, Figure 48, indicate uneven contact around the face, where the narrow face is only touching the wide face off and on. Ensure that the seal faces are flat, check the flatness of the chamber face, tighten gland bolts evenly, and make sure that the stationary is not cocked. Consider a seal design with a flexibly mounted stationary.

![Figure 48. Intermittent Wear Pattern](image)

- **Uneven wear patterns**, Figure 49, indicate that the shaft is out of alignment or that the seal was not properly centered. Realign the equipment, check the seal and gland centering, and inspect for buildup and accumulation around the seal.

![Figure 49. Uneven Wear Pattern](image)

- **Deep wear pattern** on the hard seal face, Figure 50, is the result of inadequate lubrication or abrasives embedded in the soft (carbon) face grinding a groove in the hard face. Provide adequate flush to exclude abrasives from the seal chamber, change seal design, use hard faces, or prevent crystallization of the sealing fluid.

![Figure 50. Deep Wear Pattern on the Hard Face](image)
8.4.2 Seal face examinations may indicate other possible causes of seal failure.

- **Heat checking** is seen as fractures in the seal face that radiate from the center of the seal ring, Figure 51. They may be caused by localized expansion resulting from severe temperature changes caused by dry running, vaporization of the sealing fluid, inadequate cooling, or excessive pressures or velocities. Heat checking may be accompanied by discoloring or bluing of the seal ring. Reduce the temperature by flushing or cooling the chamber, change seal face materials, or change seal design. Eliminate dry running.

![Image of Heat Checking](Image)

Figure 51. Heat Checking

- **Cracked hard face**, Figure 52, is the result of thermal or mechanical shock of a seal ring. Ceramic seal rings are sometimes subject to this type of failure, but other materials can also crack. Use caution in handling seal rings, avoid over tightening of clamped units, avoid dry running, provide cooling, or change face materials.

![Image of Cracked Hard Face](Image)

Figure 52. Cracked Hard Face

- **Chipped edges**, Figure 53, may result from mishandling or rapid separation and closure of the faces. Causes include pump cavitation, excessive vibration, shaft deflection, and flashing (popping) of the sealing fluid as it crosses the seal face. Use care in handling seal rings, return equipment to manufacturer’s specifications, avoid cavitation, cool the seal chamber, provide adequate pressure in the seal chamber to avoid flashing, or change face materials. In welded metal bellows designs, damage to the face can result from nutation or coining of the seal rings. Improve face lubrication, use a seal design that includes a vibration damper, or change seal face materials.

![Image of Chipped Edges](Image)

Figure 53. Chipped Edges

- **Flaking and peeling** of a hard seal face coating, Figure 54, is the result of a defective coating or of chemical or thermal attack of the interface between the coating and the base material. Provide adequate cooling, change materials, or change to a solid face material.

![Image of Flaking or Peeling](Image)

Figure 54. Flaking or Peeling

- **Pitting, blistering, or corrosion** of a seal ring, Figure 55, is the result chemical attack of the seal ring or of sealing fluid being forced from a porous seal ring due to rapid temperature changes. Provide adequate cooling, change materials, and avoid rapid temperature changes (dry running) when using viscous sealing fluids. Pitting and blistering usually occur on the wearing face. Corrosion and spalling may occur on all exposed surfaces of the seal ring.

![Image of Pitting of Seal Face](Image)

Figure 55. Pitting of Seal Face
8.4.3 Elastomers used as O-rings, boots, bellows, gaskets, and other secondary seals should be carefully examined individually.

- **Swelling**, Figure 56, is the result of chemical attack. Change to a resistant elastomer.

![Figure 56. O-ring Swelling](image)

- **Cuts and nicks**, Figure 57, are the result of installation errors or rough contact surfaces. Ensure that contact surfaces meet seal manufacturer's specifications for smoothness. Remove sharp edges and provide chamfers.

![Figure 57. O-ring Cuts and Nicks](image)

- **Hard or cracked** elastomers, Figure 58, are the result of thermal or chemical attack. Roll the O-ring to examine the inside diameter. Cool the seal chamber or select a resistant elastomer.

![Figure 58. Hard or Cracked O-ring](image)

- **Extruded** elastomers, Figure 59, may be the result of high pressure, high temperature, excess vibration, or improper shaft and O-ring dimensions. Reduce pressure, cool the seal chamber, use a backup ring, change seal design or dimensions, or change O-ring material.

![Figure 59. Extruded O-ring](image)

- **Compression set**, Figure 60, may be the result of high temperature or pressure, or chemical attack. Cool the seal chamber or change elastomer.

![Figure 60. Compression Set](image)

8.4.4 Drive mechanisms used in mechanical seals as well as metal bellows, set screws, glands, various clips, centering tabs, etc., are made of metal and other materials that are subject to chemical, mechanical, and thermal damage.

- **Bellows** should be examined for fracture (Figure 61) thermal discoloration, and chemical corrosion. Check equipment alignment and condition, installation, pump cavitation, vibration levels, and seal operating limits.

![Figure 61. Bellows Fracture](image)

- **Rotary drive casing or collar** should be examined for rubbing on its outside diameter (Figure 62) thermal discoloration, and chemical corrosion and pitting (Figure 63). Check equipment alignment, seal and chamber dimensions, seal design, installation, set screw settings, temperature limits, product buildup, and vibration levels. Change seal metallurgy.
• **Springs** may be included in some seal designs and can be subject to fatigue (Figure 64), corrosion (Figure 65), and stress corrosion (Figure 66) failure. Check equipment alignment. Change metal, spring design, or seal design.

Drive pin, drive slot, or set screw wear may be evident on the parts, the body of drive casing (Figure 67), or shaft (sleeve). Check equipment alignment, runout of shaft, vibration, and torque limitations of seal design.

Coking is a buildup of varnish or sludge on the atmospheric side of the seal, Figure 68, and is the result of chemical or thermal breakdown of a hydrocarbon sealing fluid as it crosses the seal face. Coke can clog the seal and wear carbon seal faces. Also check for deposits on the rotary casing body and inside of the gland. Use a steam purge on the atmospheric side of the seal, flush from a clean cool source, cool the seal chamber, change face materials, or change to a heat transfer fluid with higher temperature limits.
For Further Information Contact
www.fluidsealing.com
or
Flex-A-Seal, Inc
techsupport@flexaseal.com